
Using CUDA C , CUDA Fortran,
and OpenCL on a Cray XK6

Jeff Larkin

larkin@cray.com

At the end of this talk you should be
able to

• Build a CUDA C code

• Build a CUDA Fortran code

• Build an OpenCL code

• Share data between CUDA and libsci_acc

• Share data between OpenACC and CUDA

• Share data between OpenACC and libsci_acc

January 2012 2 OLCF Titan Workshop

CUDA/OpenCL PE integration

• As you would expect, much of the complexity
of using CUDA/OpenCL on an XK6 has been
simplified via compiler wrappers.

• Loading the cuda module
– Adds nvcc to the path

– Adds CUDA/OpenCL includes automatically

– Adds -lcuda automatically

– Changes to dynamic linking

– Does not automatically link in -lOpenCL

January 2012 3 OLCF Titan Workshop

CUDA/OpenCL PE integration

• Loading the xtpe-accel-nvidia20 module

– Automatically loads the cuda and libsci_acc
modules

– Enables OpenACC directives in CCE

– Turns on dynamic linking

January 2012 4 OLCF Titan Workshop

CUDA/OpenCL PE integration

• nvcc does not know about MPI headers

– Simplest solution: isolate CUDA C and MPI codes into
separate files

– More Complicated solution: explicitly include the MPI
include directory in the nvcc compile

• Building a .cu file enables C++ name mangling, so

– C codes will need to be built with the CC compiler or…

– Add extern “C” to continue using cc compiler

January 2012 5 OLCF Titan Workshop

Some Gotchas

• The module versions on chester have been
temporarily locked at versions that are not
current.

– Sometimes you will need to swap several modules
(even if they’re already loaded) to get things to
build and link properly.

– I’ve coded the Makefiles in the examples to help
you with this when they can.

– These problems will be fixed on the final machine

January 2012 OLCF Titan Workshop 6

Code Samples for this talk

• Please copy
/ccs/proj/trn001/cray/titan_workshop_examp
les.tgz

• Please hang on to these examples and slides
to refer to when trying to build your codes.

January 2012 OLCF Titan Workshop 7

CUDA FOR C

January 2012 OLCF Titan Workshop 8

CUDA for C - What?

• CUDA C is a programming model that has been created
and is supported by Nvidia.

• It consists of both library calls and language extensions.
– Only Nvidia’s nvcc compiler understands the language

extensions

• Lots of tutorials and examples exist online

• Requires explicitly rewriting important parts of your
code to
– Manage accelerator memory

– Copy data between CPU and accelerator

– Execute on the accelerator

January 2012 OLCF Titan Workshop 9

CUDA C (serial)

• The Plan:

– Write a CUDA C kernel and a C (or Fortran) main
program

– Build and link with nvcc

– Launch executable with aprun

• The Code: example1_serial/scaleitC.cu

• Supported PEs: Any

– Works best with GNU or Cray (with -hgnu flag)

January 2012 OLCF Titan Workshop 10

CUDA C (MPI)

• The Plan:
– Write a CUDA C kernel and a launcher function in a .cu file containing

no MPI
– Write a C (or Fortran) main program with MPI
– Build .cu nvcc, rest with cc (or ftn)
– Link via cc (or ftn)
– Launch executable with aprun

• The Code: example2_mpi/scaleitC*
• Supported PEs: Any

– Works best with GNU or Cray (with -hgnu flag)

• Gotchas
– nvcc uses C++ name mangling unless extern “C” is used.
– If CUDA and MPI must exist in the same file, it’s necessary to point

nvcc to the MPI include directory

January 2012 OLCF Titan Workshop 11

CUDA FORTRAN

January 2012 OLCF Titan Workshop 12

CUDA Fortran - What?

• CUDA Fortran is a parallel to CUDA for C created
by PGI and Nvidia and supported by PGI.

• It is a mixture of library calls and Fortran
extensions to support accelerators.

• Requires explicitly rewriting important parts of
your code to

– Manage accelerator memory

– Copy data between CPU and accelerator

– Execute on the accelerator

January 2012 OLCF Titan Workshop 13

CUDA Fortran (serial)

• The Plan
– Create a Fortran module containing CUDA kernel and data

– Create Fortran main, which calls launcher function from
above module

– Build and Link with ftn

– Run with aprun

• The Code: example1_serial/scaleitF.F90

• Supported PEs: PGI Only

• Gotchas
– CUDA Fortran requires the use of Fortran modules, if you

have pure F77 code, it will need to be updated to F90

January 2012 OLCF Titan Workshop 14

CUDA Fortran (mpi)

• The Plan
– Create a Fortran module containing CUDA kernel and data

– Create Fortran main, which calls launcher function from
above module

– Build and Link with ftn

– Run with aprun

• The Code: example2_mpi/scaleitF.F90

• Supported PEs: PGI Only

• Gotchas
– CUDA Fortran requires the use of Fortran modules, if you

have a pure F77 code, it will need to be updated to F90

January 2012 OLCF Titan Workshop 15

BUILDING A PARALLEL OPENCL
CODE

See example3/

January 2012 OLCF Titan Workshop 16

OpenCL - What?

• OpenCL is a set of libraries and C language
extensions for generic parallel programming over
a variety of devices.

• Industry standard maintained by Kronos Group
and supported by multiple vendors.

• Functionally similar to low-level CUDA driver API.
• Requires explicitly rewriting important parts of

your code to
– Manage accelerator memory
– Copy data between CPU and accelerator
– Execute on the accelerator

January 2012 OLCF Titan Workshop 17

OpenCL

• The Plan:
– Write an OpenCL kernel and a launcher function in

a .c

– Write a C (or Fortran) main program with MPI

– Build with cc (and maybe ftn)

– Link via cc (or ftn) adding -lOpenCL

– Launch executable with aprun

• The Code: example3/

• Supported PEs: GNU

January 2012 OLCF Titan Workshop 18

SHARING DATA BETWEEN CUDA
AND LIBSCI

January 2012 OLCF Titan Workshop 19

LibSci and CUDA for C

• What: Part of the code relies on LibSci
routines and part has been written in CUDA

• The Plan:

– Build and use CUDA for C as before

– Use libsci_acc’s expert interface to call device
kernels with your existing device arrays.

• The Code: example4_cudaC_libsci/

• Supported PEs: GNU & Cray (with -hgnu)

January 2012 OLCF Titan Workshop 20

Libsci + CUDA for C

/* Copy A to the device */

cudaMalloc(&d_A, sizeof(double)*lda*M);

cublasSetMatrix(M, N, sizeof(double), A2,

 lda, d_A, lda);

/* Calling the accelerator API of dgetrf */

dgetrf_acc_(&M, &N, d_A, &lda, ipiv, &info);

/* Copy A in the device back to the host */

cublasGetMatrix(M, N, sizeof(double), d_A,

 lda, A, lda);

cudaFree(d_A);

• Use cudaMalloc and
cudaFree to manage
the device memory

• Use cublasSetMatrix
and cublasGetMatrix
to copy to/from the
device

• Use dgetrf_acc_ with
your device pointers
to run dgetrf on the
device

January 2012 OLCF Titan Workshop 21

LibSci and CUDA Fortran

• What: Part of the code relies on LibSci
routines and part has been written in CUDA
Fortran

• The Plan:
– Build and use CUDA Fortran as before

– Use libsci_acc’s expert interface to call device
kernels with your existing device arrays.

• The Code: example5_cudaF_libsci/

• Supported PEs: PGI

January 2012 OLCF Titan Workshop 22

OpenACC - Fortran

! allocatable device arrays

real, device, allocatable, dimension(:,:) ::

Adev,Bdev,Cdev

! Start data xfer-inclusive timer and allocate

the device arrays using

! F90 ALLOCATE

allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))

! Copy A and B to the device using F90 array

assignments

Adev = A(1:N,1:M)

Bdev = B(1:M,1:L)

! Call LibSCI accelerator Kernel

call sgemm_acc ('N', 'N', N, L, M, 1.0, Adev,

 N, Bdev, M, 0.0, Cdev, N)

! Ensure Kernel has run

r = cudathreadsynchronize()

! Copy data back from device and deallocate

C(1:N,1:L) = Cdev

deallocate(Adev, Bdev, Cdev)

• Use CUDA Fortran to
declare and manage
device arrays.

• Call LibSCI expert
interface to launch
kernel on device with
your data.

January 2012 OLCF Titan Workshop 23

SHARING DATA BETWEEN OPENACC
AND CUDA FOR C

January 2012 OLCF Titan Workshop 24

OpenACC & CUDA C

• The Plan
– Write a CUDA C Kernel and a Launcher function that

accepts device pointers.

– Write a C or Fortan main that uses OpenACC directives
to manage device arrays

– Use acc host_data pragma/directive to pass
device pointer to launcher

– Build .cu with nvcc and rest per usual

• The Code: example6_openacc_cuda/

• Supported PEs: Cray

January 2012 OLCF Titan Workshop 25

OpenACC C-main

/* Allocate Array On Host */

 a = (double*)malloc(n*sizeof(double));

/* Allocate device array a. Copy data both to

and from device. */

#pragma acc data copyout(a[0:n])

 {

#pragma acc parallel loop

 for(i=0; i<n; i++)

 {

 a[i] = i+1;

 }

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Use device array when calling

scaleit_launcher */

#pragma acc host_data use_device(a)

 {

 ierr = scaleit_launcher_(a, &n, &rank);

 }

 }

• Notice that there is
no need to create
device pointers

• Use acc data region
to allocate device
arrays and handle data
movement

•Use acc parallel loop
to populate device
array.

• Use acc host_data
region to pass a device
pointer for array

January 2012 OLCF Titan Workshop 26

OpenACC Fortran-main

 integer,parameter :: n=16384

 real(8) :: a(n)

 !$acc data copy(a)

 !$acc parallel loop

 do i=1,n

 a(i) = i

 enddo

 !$acc end parallel loop

 !$acc host_data use_device(a)

 ierr = scaleit_launcher(a, n, rank)

 !$acc end host_data

 !$acc end data

• Notice that there is
no need to create
device pointers

• Use acc data region
to allocate device
arrays and handle data
movement

• Use acc parallel loop
to populate device
array.

• Use acc host_data
region to pass a device
pointer for array

January 2012 OLCF Titan Workshop 27

SHARING DATA BETWEEN OPENACC
AND LIBSCI

January 2012 OLCF Titan Workshop 28

OpenACC and LibSCI

• The Plan:

– Use OpenACC to manage your data

– Possible use OpenACC for certain regions of the
code

– Use LibSCI’s expert interface to call device routines

• The Code: example7_openacc_libsci

• Supported PEs: Cray

January 2012 OLCF Titan Workshop 29

OpenACC with LibSCI - C

#pragma acc data

copyin(a[0:lda*k],b[0:n*ldb])

copy(c[0:ldc*n])

 {

#pragma acc host_data use_device(a,b,c)

 {

dgemm_acc('n','n',m,n,k,alpha,a,lda,b

,ldb,beta,c,ldc);

 }

 }

• OpenACC data region
used to allocate device
arrays for A, B, and C
and copy data to/from
the device.

January 2012 OLCF Titan Workshop 30

OpenACC with LibSCI -
Fortran

!$acc data copy(a,b,c)

!$acc host_data use_device(a,b,c)

 Call

dgemm_acc('n','n',m,n,k,alpha,a,lda,b

,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

• OpenACC data region
used to allocate device
arrays for A, B, and C
and copy data to/from
the device.

January 2012 OLCF Titan Workshop 31

PE Support Summary

CUDA for C CUDA
Fortran

LibSci_acc OpenAcc OpenCL

PrgEnv-cray

PrgEnv-pgi

PrgEnv-gnu

January 2012 OLCF Titan Workshop 32

Full Support

Limited/Forthcoming Support

Currently No Support

